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Numerical solutions are presented for the detailed characteristics of the drift current 
and Langmuir circulation system produced according to a theory described in part 1 
of this paper. The motions that develop are traced from an initially quiescent state, 
and the results are compared with field observations of currents in Langmuir circula- 
tions. Qualitative features of the phenomenon appear to be reproduced by the theory 
and, with the appropriate choice of an empirical parameter, the solutions seem to be 
quantitatively consistent with field data. 

1. Introduction 
Langmuir (1938) identified a coherent convective motion in the surface layers of 

lakes and the oceans in the form of roll cells with axes parallel to the direction of the 
wind. From his observational studies of these motions, Langmuir concluded that they 
are mechanical in origin, and that the principal motive force is the applied wind stress. 
He further speculated that the mixing accomplished by the cells might be the agency 
responsible for the formation of the thermocline. Craik & Leibovich (1976) listed five 
features of the Langmuir circulations that they believed to be most firmly established 
by field observations and that any satisfactory theory presumably must therefore 
explain : (i) a parallel system of vortices aligned with the wind must be predicted, (ii) a 
means must be given by which these vortices are driven by the wind, (iii) the resulting 
cells must have the possibility of an asymmetric structure with down-welling speeds 
larger than upwelling speeds, (iv) downwelling zones must be under lines where the 
wind-directed surface current has a maximum, and (v) the Langmuir circulations must 
have maximum downwelling speeds which are comparable with the mean wind-directed 
surface drift. These attributes have been consistently reported by observers and may 
be considered to be commonly accepted features of the phenomenon. Langmuir’s 
observations were extensive, although not entirely systematic. More recent field obser- 
vations, however, have confirmed Langmuir’s description of the structure and origin 
of these motions. 

Two new and distinct theoretical mechanisms in addition to that given by Craik & 
Leibovich (1976) have been proposed, essentially simultaneously, by Gammelsrod 
(1975) and by Garrett (1976). These recent efforts were stimulated by a renewed 
awareness of the important impact Langmuir circulations must have on the dynamics 

t Present address : Department of Mechanical Engineering, Massachusetts Institute of 
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of the mixed layer in the ocean. The potential significance of the vertical mixing 
accomplished by the motions discovered by Langmuir has been recently emphasized 
by Leibovich & Ulrich (1972) and in reports on field observations by Scott et al. (1969), 
Myer (1971), Assaf, Gerard & Gordon (1971) and Gordon (1970). The present paper 
continues an extension and refinement of the Craik-Leibovich model that was begun 
in Leibovich (1976). Before describing the contents of the present contribution we will 
briefly review the theories advanced by Gammelsrrad and Garrett.? Craik & Leibovich 
(1976), which will be referred to as CL below, may be consulted for references 
to reviews of earIier work, and for additional discussion of the phenomenon. Also, 
Pollard’s (1976) review of the subject summarizes experimental and theoretical 
efforts, and points to the potential significance of this phenomenon to mixed-layer 
dynamics. 

The theory proposed by Gammelsrrad assumes the existence of uniformly sheared 
current in a mixed layer with depth H small compared with the Ekman depth. In this 
case, Ekman’s classic solution (1905) for finite depth yields a current that is essentially 
parallel to the wind direction and uniformly sheared, even though the Coriolis accelera- 
tion is accounted for. Gammelsrrad then considers the linearized stability of this current 
to roll motions parallel to the current direction. The inclusion of the Coriolis accelera- 
tion is crucial, since in its absence no instability occurs. When the dimensionless shear 
rate s = f-lAUU/H is sufficiently large (where AU is the basic current variation across 
the layer with thickness H and f is the Coriolis parameter) Gammelsrrad finds that small 
disturbances will amplify on a time scale consistent with the growth time of Langmuir 
cells. As an example, observations of wind streaks made in Josenfjorden, Norway, 
were cited under the following conditions: depth H of the pycnocline was only 2 m, and 
AU was 20 cmls. Thus, the depth H was small compared with t,he Ekman depth, as 
required, and the dimensionless shear rate s - lo3 was large. The e-folding time of 
amplifying disturbances with a streak width of 5 m was computed to be 13 min, which 
is consistent with Langmuir circulation data. 

A significant Coriolis effect is very curious, however, and upon closer examination 
it seems to us that Gammelsrsd’s theory is not likely to apply to the phenomenon of 
Langmuir circulation. Let v be a velocity scale characteristic of the amplifying 
instability that Gammelsrsd identifies as the growing Langmuir circulation, and 
estimate the Rossby number eR based upon v and H ,  so that 

= vFH. 

Coriolis accelerations are significant compared with inertial effects only when eR is 
small. Using the data already cited by Gammelsrsd (i.e. f H  = 0.02 cm/s when s = 1O3), 
however, we find that eE exceeds unity for v in excess of 0.02 cm/s. Thus for motions 
as vigorous as Langmuir circulations (many cmls), the Coriolis acceleration essential 
to the Gammelsrrad mechanism is negligible compared withinertial effects. This implies, 
for us, that Gammelsrsd’s circulations cannot grow to detectable levels, and it is very 
likely that Coriolis accelerations may be neglected altogether when considering the 
growth of Langmuir circulations of all previously reported length scales (although the 
effect of an established Ekman layer presumably may modify the motion in larger 

t Part 1 of this paper (Leibovich 1976) had already been prepared before these papers 
appeared and therefore they were not discussed there. 
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scale Langmuir circulations, the Coriolis acceleration itself should be otherwise negli- 
gible in all respects in their formation). 

Garrett’s mechanism is a complicated instability, and is based upon the following 
ideas. An initial spanwise perturbation with speed U ( y )  is taken in water of infinite 
depth, where y is a horizontal co-ordinate perpendicular to the direction of U. This 
perturbation is assumed to be independent of the wind direction x, and variations of U 
with respect to the vertical co-ordinate z are assumed to be ignorable. Surface waves 
travelling at  an angle to the wind are refracted by the current, leading to an increase in 
the wave energy on the line of maximum U .  This set of events produces an average 
force that creates a mean-flow convergence towards the line of maximum U, and 
increased wave breaking along this line reinforces U .  

Questions can be raised concerning the applicability of the Garrett model to Lang- 
muir circulations (as, indeed, may be done with the present model as discussed below). 
The points we find most troublesome are the following. (1) The model deviates from the 
understood usage of wave-mean-flow interaction analyses without comment. By 
averaging the equations of motion for the fluid above a certain depth h (below the mean 
free surface), as described by Phillips (1966), the waves are seen to exert a force on the 
mean flow. It is then assumed that, in some undescribed fashion, the force exerted by 
the waves on the mean flow of water above depth h, which in the usual theory of wave- 
mean-flow interaction is distributed through the water depth, is transmitted as a stress 
on the water below depth h. As far as we can tell, there is no mechanical basis for this 
step. There is no clear way to determine h; one can increase h by any multiple as far as 
the usual wave-mean-flow interaction methods are concerned; as a matter of fact, in 
such theories h is taken as the total water depth. One would normally believe that, as 
the theory of wave-mean-flow interactions contemplates, the forces exerted by the 
waves on the mean flow are balanced primarily by accelerations of the mean flow above 
depth h. (2) The neglect of a vertical variation of U cannot be justified. (3) The stress 
exerted by the wind is not explicitly required. In  particular, it  would seem that Lang- 
muir-circulation ‘windrows ’ should sometimes form, if the Garrett mechanism is 
appropriate, in the absence of wind. This does not seem to occur. 

The physical basis of the Craik-Leibovich theory is succinctly described in the 
introduction to part I of this paper (Leibovich 1976). In  brief, vorticity in the sheared 
current created by the wind stress is distorted by spanwise-variable Stokes drift, 
creating a component of vorticity in the wind direction. The circulations generated 
in this way are therefore directly driven by the wind drift current and its interaction 
with surface waves. For the surface waves to produce the spanwise-variable Stokes 
drift, a degree of regularity of the wave spectrum is required that may be unrealistic in 
practice and this may be a serious objection to the present theory. In  particular, the 
surface waves need to be phase locked for many (perhaps 100) wave periods. The point 
is discussed at greater length in 56. A. D. D. Craik (1977) has pointed out, however, 
that the mathematical model developed in CL, as generalized in part 1, allows circula- 
tions to be generated by means of a Stokes-drift-driven instability almost completely 
analogous to thermal convection. The Stokes drift required need not have spanwise 
variations and a random wave field can be assumed. 

In  part I the CL theory was extended to remove the basically limiting assumption 
of quasi-steady flow and the improved theory was used to discuss the horizontally 
averaged wind drift current. In  the present paper, a numerical method free from 
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difficulties encountered in CL is used to calculate the detailed current system using the 
equations developed in part 1. The results pertaining to the horizontally averaged 
current that is one component of the interconnected system of wind drift currents and 
Langmuir circulations have already been presented in part 1. The object of this paper 
is to describe the computations, and to examine the relationships between the results 
and the five features listed above. The focus here is therefore on the vertical motions 
and on the detailed structure of the Langmuir cells. All five features are reproduced 
by the solutions described in this paper. Some specific quantitative features of the 
current pattern which should be amenable to experimental test are the following: 

(i) the maximum horizontal sweeping speed (velocity component towards conver- 
gence zones) at the surface is very close to the maximum downwelling speed, 

(ii) if L is the distance between upwelling and downwelling zones (half the distance 
between streaks) the surface sweep referred to in (i) reaches its maximum at a position 
that is about 0.25L to 0.3L from the convergence zones, 

(iii) the downwelling speeds are typically more than twice the upwelling speeds, 
(iv) the system of wind drift currents and Langmuir circulations near the surface 

is established after a time period of about 10Td, where 

Td = CT-'(VT CT)i/€U*, 

IT is a typical wave angular frequency, 6 is a measure of wave slope, u* is the water 
friction velocity and vT is an eddy viscosity. It is shown in part 1 that Td is of the order 
of minutes in typical cases. After this period of growth, the near-surface current system 
is essentially invariant although the mathematical problem as a whole has no steady 
limit. 

Additional statements can be made by using known results (not related to Lang- 
muir circulations) about the surface drift current, and often-used correlations about 
wind waves, to relate the eddy viscosity to the sea state and wind speed. These results 
can be found in $5.2. Although this procedure is speculative, it leads to a simple rela- 
tion (equation (25)) linking the current system to the wind speed and sea state. Fur- 
thermore, (25) seems to yield quantitatively realistic results for all three components 
of the system of currents and circulations. 

Detailed velocity measurements have not been made in Langmuir circulations, and 
a systematic series of current measurements poses an extremely difficult experimental 
task. Yet until such measurements are made no theoretical mechanism of the Lang- 
muir circulations can be satisfactorily verified. Nevertheless, despite the doubt that 
exists about the underlying assumptions concerning the surface wave field, (25)  seems 
to predict what is known about the current structure sufficiently well to be used now as 
a mathematic model for the mixing accompIished by Langmuir cells. 

The instability mechanism suggested by Craik requires a minimum of a priori 
assumptions, and therefore offers very attractive possibilities as a theoretical explana- 
tion of Langmuir circulations. The details need to be explored, and the theoretical 
predictions, particularly of finite-amplitude convective motions, must be compared 
with observation. One might expect, however, that the instability mechanism would 
lead to finite-amplitude motions that are similar to the results of the present calcula- 
tions. Both the present mechanism and the instability mechanism are based upon the 
same set of rectified equations (those presented in part l ) ,  and consequently follow 
from the same scalings and ordering assumptions. It is also possible that the direct 



System of wind drift currents and Langmuir circulations in the ocean 485 

coupling of wind and waves inherent in the present model may provide initial pertur- 
bations that then continue to grow by the instability mechanism. To perform this 
function, the waves need be phase-locked only for a relatively short time. 

2. The model problem for the evolution of the current system 
The model of part 1 treats a body of constant-density water of infinite depth. For 

time t < 0, the water is at  rest in z < 0, while for t 2 0 a constant shear stress in the 
2 direction due to the wind is imposed at the mean free surface z = 0. Let i, j and k be 
unit vectors in the x (wind), y and z (vertical) directions, and let the co-ordinate system 
be right-handed. A surface wave field is assumed to exist, and to have wave parameters 
(frequency, wavenumber vectors, amplitude spectrum) that are fixed in time. In  par- 
ticular, the following wave model is specifically treated in part 1 and in the present 
paper : 

where 11, is the velocity produced by the wave motion alone. The velocity field (1) 
arises €rom the superposition of a small-amplitude irrotational wave train of frequency 
v, wav enumber vector 

and am,plitude a, and a second wave train that differs only by the replacement of 0 by 
- 8 in (2). Since i is a unit vector in the wind (2) direction, and j is a unit vector in the y 
direction, the motion in (1) is the simplest representation of a short-crested wave 
field, with directional characteristics symmetric with respect to the wind direction. 
If the complete equations are averaged over a number of wave periods as described in 
part 1, the waves produce a driving force in the equations for the developing current 
system. The currents then develop in response to the wave-induced driving force and 
to the wind stress imposed on z = 0 

where u* is a water friction velocity. It is shown in part 1 that if the current (the non- 
oscillatory part of* the water motion) is scaled in the following way, 

u, = grad (2am-l eKz cos (KY sin 8) cos (KX cos 8 - v t ) ) ,  (1) 

K = ~ ( c o s  8i + sin Sj), (2) 

7, = P 4 ,  

U, = (u",vr K )  ui + (u*a/vT) (av,)t (Vj + Wk), (3) 

(aK.*)-l ( v , / d t ,  (4) 

( 5 4  

( 5 b )  

where uT is an eddy viscosity that is assumed to be constant, and if lengths are scaled 
by K - ~  and time by 

then the development of the current system is described by the equations 

ut + Vu, + Wu, = LaV2u, 

Q, + V Q ,  + WQz = LaV2Q + F ,  
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The wave forcing is felt through u,, which is a Stokes-like wave drift that acts to 
stretch vortex lines in the current. The problem (6a-g) depends upon the two para- 
meters 0 and La, the latter being called the ' Langmuir number ' in part 1. 

A solution of (5) with the same y periodicity that appears in u, is possible, and we may 
calculate this solution by imposing the boundary conditions 

Y ( O , z , t )  = Y(L,z,t) = 0, 

Q(O,z ,  t )  = Q(L, 2,  t )  = 0, 

( 6 4  

( 6 b )  

au aU - ( 0 , Z )  t )  = - (L, 2, t )  = 0, 
aY aY 

where L = n/2sin0. ( 6 4  

The two planes y = 0, L define a cell that comprises half of the y period of a motion that 
is assumed to take place in IyI < co, z < 0. A constant shear stress in the wind direction 
is assumed to be the only component of the applied stress vector that acts upon the 
surface z = 0. The scalings used in (5) are chosen so that the applied stress condition 
may be written 

(7a) 
au 
82 

The plane z = 0 is also a stream surface for the current, so we must have 

- (y, 0, t )  = 1. 

VY,  0, $1 = 0 ( 7 b )  

and ( 7 b )  may be used to write the required condition on the y component of the 
applied surface stress as 

~, , (Y,  0, $1 = 0. (7 4 
Conditions ( 7 b )  and (7c) imply that 

and, as z+00 for t < 00, we impose the conditions 

The initial conditions are 

Q(y ,O , t )  = 0 

u,Y+O. 

u(y,z,O) = Y(y,z,O) = 0. 

Equations ( 5 )  and conditions (6-10) constitute the complete mathematical statement 
of the problem that we consider in this paper. 

If (5a) ,  written in divergence form, is integrated over a cell ( - 00 < z < 0 , O  f y < L )  
and the stress condition (7 a)  is applied, one sees that the x momentum of the fluid in 
the cell increases with time according to Lt(Lu). As in part 1, we define the horizontally 
averaged x velocity component to be 

Let M be the x momentum per unit width of cell, then 
0 

M ( t )  = j -mi idz  = tLa. 

The result (12) will be referred to in subsequent discussions. 



Xystem of wind drift currents and Langmuir circulations in the ocean 487 

3. The finite difference approximation 
This section contains a description of the numerical methods employed in this 

research. The description is organized in four subsections: $3.1 deals with the finite 
difference representations of equations (4)) $ 3.2 describes the treatment of boundary 
conditions, $3.3 describes the sequencing involved in the advancement of the solution 
by one time step and $3.4 describes the checks of accuracy, convergence and the con- 
servation of momentum. 

3.1. Finite difference representations 
The flow region corresponding to a single cell was covered by a rectangular set of 
points. The y interval 0 < y 6 L was covered by a mesh yi = (i - 1) Ay, i = 1,  2, . . . , 
N Y .  Typically, the mesh included 21 points, plus two dummy points used to satisfy 
conditions at the y boundaries; although some calculations were also carried out with 
11 and 41 points. The infinite interval x 6 0 was represented by a uniform mesh that 
at a given instant contained the N Z  + 1 points zj = - (j  - 1 )  Az, j = 1, 2, . . . , NZ + 1. 
The total number of z mesh points was increased as time progressed; the number N Z  
at any given level of time was determined internally in the program in a manner to be 
described in $3.2. Typical mesh sizes for Ax included 0.02,0*05, 0.1 and 0.12. All mesh 
sizes yielded qualitatively similar results, and the Az for a particular run was usually 
chosen as a compromise between accuracy and economy. 

The numerical method used was a standard explicit two-time-level algorithm. Time 
derivatives were represented by forward time differences, and the x momentum 
and vorticity equations (513, b )  were approximated by conservative finite-difference 
equations. Convective derivatives in conservation form were approximated by the 
second-upwind difference method (see Roache 1972, p. 7 3 ) .  All Laplacian operators in 
(5) were replaced by five-point difference formulae. The vorticity generation term F 
was evaluated by analytically differentiating us as needed [see 5 (c ,  d ) ] ,  and by using 
centred-difference formulae for uy and u,. The stream function was found from the 
finite difference analogue of the Poisson equation ( 5  e )  by the method of successive over- 
relaxation, using the optimum relaxation factor for rectangular domains. 

3.2. Boundary conditions 

The boundary condition u+ 0 as z + - 00 was replaced by the condition t h a t  the ratio 
of the maximum value of u on t h e j  = N Z  row of points to the maximum value of u at 
the surface ( j  = 1) be less than lo+. Since the scheme is explicit, this condition is con- 
venient to apply. Each advancement of time from a level nAt to ( n  + 1) At causes a 
change of u (and Q) on t h e j  = N Z  row (both u and Q are set to  zero o n j  = N Z +  1). 
When u exceeded the specified limit on this line, N Z  was increased by one and the 
solution repeated until N Z  was large enough to allow the condition on u to be met. We 
refer to the depth z = - N Z  Az as the ‘depth of influence ), since it marks the percep- 
tible depth of penetration of momentum. The remaining equations are then solved with 
the enlarged net, and the depth of influence is verified by ensuring that the vorticity 
!2 at the depth of influence is less than If it is larger than this value, the depth of 
influence is increased and the solution repeated. The net thus grows in size as time 
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increases in a way that naturally reflects the penetration of flow disturbances with 
time. 

The exact boundary conditions require the vorticity R to vanish a t  all boundary 
points for all values of time. The R and H fields are therefore initialized at zero, and are 
evaluated only at internal grid points. Similar remarks apply to the stream function Y. 
It was found, however, that the application of the condition Y = 0 at the lower boun- 
dary led to x gradients in Y (i.e. v velocity components) sufficiently large to indicate 
that a condition approximating Y = 0 had not been achieved. The reason for this 
situation is clear: the lower boundary is set to be the 'depth of influence', which is a 
measure of the penetration distance of the vorticity. The stream function decays 
exponentially fast below a depth measured from the region of significant vorticity 
accumulation. Thus its decay effectively begins at a level shifted down from the 
surface, and the decay is not yet sufficiently great at the depth of influence to have both 
Y and Yz negligibly small. In  order to improve accuracy, a modified boundary con- 
dition (suggested by the outer solution (34) of part l),  

Yz = 2 sin BY, ( 1 3 4  

at the lower boundary was used. Since x = - NZAz at the depth of influence, the 
implementation of this boundary condition by use of backward differences produces 
the relation 

q, NZ+1 = Ti, NZ/(1+ 2 sin @w, (13b)  

which was used as the lower boundary condition for Y. Experiments on the model 
problem 

V2Y = -eesiny, Y(y,O) = Y(0,z) = Y(n,z)  = 0, Y+oo as z+ -oo 

using both the boundary condition (13b) and Y = 0 at the lower boundary proved 
(13b) to be much superior. The model problem, a good simulation of the physical 
problem, has the exact solution Y = -4xe"siny. As an example, the depth of in- 
fluence was set at 4 and the finite difference solution to the model problem was obtained 
using (13b) with Ay = &r and Ax = 0.2. The numerical solution at  z = - 4  and 
y = ijr was Y = 0.0330, which may be compared with the exact solution Y = 0.0367 
at that point. The straightforward boundary condition would, of course, yield Y = 0 
at the point in question. 

The method of satisfying the lower boundary condition for u has been outlined in our 
discussion of the definition of the depth of influence. The boundary conditions on u at 
the top and the sides are of Neumann form: on the sides &lay = 0 and on the top 
au/& = 1.  These conditions were handled by the use of dummy points, and by solving 
special forms of (5u) along the boundary lines. At the left end of the cell (i = l),  the 
condition aulay = 0 is satisfied by taking us, = u,,, where i = 0 represents the column 
of image points that is the reflexion in i = 1 of the column i = 2. (The notation is 
ui, = u(yi, xi), where yi = (i - 1) Ay, xi = - ( j  - 1) Az.) This condition, together with 
the observation that v is an odd function of y, leads to a special form of the finite differ- 
ence analogue of (5 u )  that is applicable on the i = 1 column. Similar remarks apply to 
the right-hand side of the cell y = L. 
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The boundary condition (7a )  is to be simulated at  the top (y = 0 , j  = 1) of the mesh, 
and this is also treated by a dummy row of pointsj = 0, and by the use of a special 
form of ( 5 a )  to describe the evolution of u along y = 0. Since w = 0 at y = 0, the 
differential equation for u can be written 

aulat = - v aulay + LaV2u. 

Making use of the dummy points, this equation is represented by the finite difference 
analogue 

Values of u along the dummy row are replaced in (14a) by the finite difference repre- 
sentation of the stress boundary condition 

(u?, 0 - u?, 2 ) / 2 A ~  = 1 

or = u ? , ~  + 2A2. (14b)  

Although the finite difference equations are written in conservation form, the 
boundary condition (14a, b )  is not conservative, and the overall scheme therefore is not 
in conservation form. Our earlier numerical experiments indicated that the method 
described was more accurate, when compared with analytical solutions valid for small 
time, than a fully conservative treatment. The present method was therefore used, 
and momentum was numerically computed to assure that unacceptable momentum 
sources or sinks did not appear (cf. $3.4). 

3.3.  Description of a computational cycle 
The sequence for advancement of the solution from time t ,  to the new level 

is as follows : 
(1)  The speed u in the wind direction is advanced at all grid points with the difference 

approximations and boundary conditions discussed in 933.1 and 3.2.  The depth of 
influence is checked and if necessary a new depth is generated. 

( 2 )  The forcing function F is calculated at all interior grid points as described above, 
using values of u at the new time level. 

( 3 )  The vorticity s1 at all interior grid points is then advanced. 
( 4 )  The depth of influence is verified by applying the test described in $3.1 on the 

vorticity. If necessary the depth is increased and steps 1 to 3 are repeated on the grid 
points in the additional row. 

( 5 )  The stream function Y is advanced at all grid points with the boundary condi- 
tion (13  b )  used on the lower boundary. 

(6) The velocities v and w are determined from the new stream-function field. 
(7)  The average velocity U and Reynolds stress -tG (presented in part) are 

computed at each row using Simpson’s rule. The momentum M ( t )  (equation (12 ) )  is 
evaluated from U by the trapezoidal rule 

(8) The field of mesh points is scanned in order to ensure that the time step At is not 
greater than the stable time step. This stability requirement is discussed in the next 
subsection. 

tn+l = t, + A t  
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Wind A 

Y 

FIGURE 1. Sketch of the predicted motions, showing the relationship between the surface wave 
field, the surface wind-directed drift current (Stokes drift excluded), and the subsurface con- 
vective motions. 

As an example of the variation of the computational parameters, the number of grid 
points in the mesh increased from 1407 a t  t = 5 to 6615 a t  t = 35 for 8 = 30°, La = 0.01, 
A y  = 0.157, Az = 0.02. The number of computational cycles required to  advance the 
solution by unit time was typically 100. 

3.4. Checks on the numerical solution 

The following checks were made to support the numerical solution. 
(1) Stability of the scheme is achieved by restricting the time step At; no restrictions 

are imposed on the spatial mesh. The schemes used in the solution for u and i.2 require 
that 
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FIQWRE 2. Streamlines in the plane perpendicular to the wind for 8 = 30" and La = 0.01, for 
various dimensionless times. (a) t = 16, ( b )  t = 31, (c) t = 63. 

The field of mesh points was scanned in order to determine the largest allowable At 
that will satisfy the stability requirements. In  our computational runs a constant 
value of At was used and comparisons were made to ensure that this did not exceed the 
stable value of At. 

( 2 )  The accuracy of the solution at small time was assessed by comparing the solu- 
tion for u with the exact solution of the Rayleigh problem, and with the small time 
extension derived in part 1. For times up to t = 2,  the error was less than a fraction of a 
per cent for the finest mesh used. 

(3) The conservation of momentum provides a precise global check on the solution 
for all time t and was continually monitored as the solution unfolded. The maximum 
error in global momentum in the numerical solution with Az = 0.02 is around 0.2 yo; 
with Az = 0.1, it  did not exceed 7 yo. 

4. Computed motions in a cell 
In  order to place the figures to follow in proper orientation with respect to the sur- 

face wave fiel? we point out that y = 0 corresponds to a line along which peaks of the 
wave field (1)  propagate, and y = L is a nodal line with zero displacement of the mean 
free surface. Therefore, the wave drift u, is greatest on the line y = 0 and least at y = L. 
The sketch in figure 1 may be of help in picturing the situation. 

Figure 2 illustrates the evolution of the streamline pattern computed for a Langmuir 
cell for 6 = 30" and La = 0.01. For very early time levels (not shown) the vortex 
centre is on the line y = $L, and the motion is symmetric. An interesting feature, how- 
ever, is the development of a strong asymmetry that is manifest at t = 10. Downwelling 
is significantly stronger than upwelling motions at t = 10, and the horizontal motions 
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FIGURE 3. Maximum vertical speeds on the planes of convergence (downwelling) and divergence 
(upwelling) as a function of dimensionless time for 0 = 30' and La = 0-01. Notice the difference 
between the magnitudes of upwelling and downwelling speeds. Downwelling speeds have a 
clearly defined characteristic development time, and change slowly for larger times. 

are strongest at the surface. As an illustration of the asymmetry, upwelling and down- 
welling speeds on lines of convergence (y = L )  and divergence (y = 0)  are plotted in 
figure 3 as a function of time for 8 = 30". The greatest difference in upwelling and down- 
welling speeds occurs between t = 10 and t = 15. 

This asymmetry relaxes somewhat at later times, although it is still a distinct 
feature at the largest values of time that we have computed. If we follow the vortex 
centre in time, it moves to the right and downward, and then reverses its horizontal 
movement and creeps back towards the horizontal centre of the cell while continuing 
its slow descent into the fluid below. The time of reversalof thevortex-centre movement 
is reflected in changes in the time behaviour of other features of the solution. Up- 
welling and downwelling have already been mentioned. Another example is the time 
behaviour of the maximum and minimum values of the u velocity component at the 
surface, which is shown in figure 4. 

The explanation for these overshoots is thought to be as follows: the time period 
between the initiation of motion and the reversal of the vortex-centre motion corres- 
ponds to the time period required to establish the equilibrium structure in the U 
currents that is described in part 1. Gradients of U are greatest in this time period. 
These gradients subsequently are smoothed by the mixing that is developed in the 
circulations until an 'equilibrium ' is established, after which 21 changes very slowly 
and maintains its basic structure. This initial starting-up period is therefore one in 
which the rate of growth of vorticity is greatest. The developing convection serves to 
transport vorticity vertically downward and therefore smooths out a vorticity buildup. 
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FIGURE 4. Maximum and minimum values of the z velocity component at the surface as a 
function of time for La = 0.01 and 8 = 30'. 

The history of streamline patterns for the case 8 = 15", La = 0.01 is much the same 
as the 8 = 30" example, and is shown in figure 5 .  A longer time is required for the 
development of the motion. The cell is almost twice as wide as the 8 = 30" cell, but the 
velocities that deveIop are comparable. Consequently, the convection time for 0 = 15" 
is nearly double the convection time for 8 = 30", and the time required to establish 
(geometrically) similar stages of motion is therefore nearly twice as long for 8 = 15" 
as it is for B = 30". Of course, since the velocity fields are comparable, actual rates of 
penetration of the depth of influence are also comparable. 

Figures 6 and 7 present contour lines for x vorticity for 8 = 30" and 15". The region 
of vorticity generation near the surface is clear. At greater depths, vorticity changes 
occur owing to convection and diffusion only, and the former is dominant. Thus, the 
vorticity contour lines are essentially material lines, and the changes as time increases 
can be interpreted reasonably well from this viewpoint. Two expanded views of the 
region of vorticity generation near the surface are given in figure 8 for both angles 8. 
These patterns remain essentially independent of time for each angle in these regions, 
which correspond to the 'equilibrium ' regions discussed in part 1. 
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FIQURE 5. Streamlines in the plane perpendicular to the wind for 0 = 16' and La = 0.01, for 
various dimensionless times. Streamlines for t = 30 have been presented in part 1 of the paper. 
(a) t = 61, ( b )  t = 91, (c) t = 121. 
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FIQURE 6. Contour lines for the x component of vorticity L! for 6 = 30°, = 0.01, for various 
times. (a )  t = 15. ( b )  t = 31, (c) t = 63. 
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FIGURE 8. Contour lines for vorticity component 52, in the fluid near the surface. (a) 0 = 30°, 
t = 31, L~ = 0.01, ( b )  e = 1 5 O ,  t = 30, ~a = 0.01. 
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FIGURE 9. The wind-directed current speeds at the surface 88 8 function of the spanwise 
co-ordinate y for 0 = 30°, La = 0.01. 

The wind-directed surface current speeds for 6 = 30" at various times are shown in 
figure 9 as a function of the spanwise co-ordinate y. The corresponding information for 
8 = 15" is given in figure 10. A t  all time levels shown in these figures, a sharp peak in 
ufy, 0, t )  occurs over convergence planes (9 = L),  and the profile is flat over the remaining 
portion of the surface. Peak speeds exceed minimum speeds by more than 60% for 
6 = 30' and by more than 50 yo for 6 = 1.5". The existence of a local maximum in the 
surface wind-directed current located over downwelling zones is essential to obtain the 
fourth of the features listed in Q 1.  The issue is somewhat confused, however, by the 
concurrent action of the Stokes mass transport, and we shall return to this question in 
the next section. The evolution of the subsurface behaviour of u is shown in velocity 
profiles taken through slices of the cell at the planes y = 0, y = BL, and y = L for 
8 = 30" in figure 11. The corresponding figure for 6 = 15" has already been presented in 
part 1. 

Vertical velocities are plotted as functions of depth at  the planes of convergence and 
divergence in figures 12 and 13 for 8 = 30' and 1 5 O ,  for various times. These figures 
provide more detail on upwelling and downwelling motions than is given in figure 3. 
Notice that the maximum downwelling occurs (in each figure) at approximately the 

17 F L M  80 
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FIGURE 10. The wind-directed current speeds at the surface as a function of the spanwise 
co-ordinate y for 0 = 15O, La = 0.01. -, t = 30; - - -, t = 61, 91, 121. 

same depth for all times shown, but that the maximum upwelling speeds seem always 
to occur at about one half of the depth of influence. Thus, the largest upwelling speeds 
occur at  progressively greater depths. The maximum downwelling speeds change very 
little with time after the velocity overshoots subside. The numerical values for the 
maximum downwelling are about 50 yo greater than the maximum surface value of u. 
This does not imply, however, that the physical maximum downwelling speeds pre- 
dicted by the model necessarily exceed the maximum surface value of the x velocity 
component; as equation (3) shows, the scaling for these components differs by a con- 
stant factor. Maximum upwelling speeds on the divergence plane y = 0 grow slowly 
with time. Only for largest values of time shown does the upwelling exceed half of the 
maximum downwelling . 

The surface value of the spanwise velocity component V(y, 0, t )  is shown in figures 
14 and 15 for 0 = 30" and 0 = 15'. This is the component of velocity that sweeps 
surface material into rows above the convergence plane. In  both figures 14 and 15, the 
curves for V(y, 0, t )  for t = 60 and 90 essentially coincide, so only one curve is drawn for 
both time levels. By comparing values given in these figures with those in figures 12 and 
13 ( V and W have the same dimensional scaling) one sees that the maximum horizontal 
sweeping velocities slightly exceed the maximum downwelling speeds. 
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FIGWRE 12. Vertical velocities as functions of depth at planes of convergence (y = L )  and 
divergence (y = 0) ,  for 6 = 30", La = 0.01 at various times. 

- 2  
1 2 3 4 5 6 7 8 9 10 I I  12 13 14 15 16 17 

FIGURE 13. Vertical velocities as functions of depth at planes of convergence (y = L)  and 
divergence (y = 0 ) ,  for 6 = 16O, La = 0.01 at various times. 
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FIGURE 14. Surface values of the spanwise (sweeping) velocity component aa function of span- 
wise co-ordinate, for 8 = 30°, La = 0.01, for t = 30, 60, 90. The curves for t = 60 and 90 are 
essentially coincident, so only one curve has been drawn for both time levels. -, t = 30; - - -, 
t = 60,90. 

5. Summary of the solutions and comparison with observations 

The solutions presented in $ 4  have the following features. 
(i) The Langmuir cells are asymmetric, with downwelling speeds exceeding up- 

welling speeds typically by a factor of two or more. This factor falls below two only for 
large time. 

(ii) Convergence zones occur along nodal lines of the simple surface-wave directional 
spectrum that is assumed. The wind-directed current component u hm a sharp maxi- 
mum above regions of downwelling. Away from the peak, the surface value of u varies 
gradually across the cell. Peak values of u typically exceed values away from the peak 
by 50-60 %. 

(iii) The surface value of the horizontal velocity component that sweeps material 
towards convergence lines has approximately the same magnitude as the maximum 
value of the downwelling velocity component. 

(iv) Current speeds for 6 = 15" are generally slightly larger than those for 8 = 30'. 
This is consistent with the finding of CL that there appeared to be a (small) value of 8 
for which the Langmuir circulations are most intense. 

5.1. General features and surface wind-directed anomalies 



502 8. Leibovich and K .  Radhakrishnan 

0.7 - 

0.6 - 

0.5 - 

- u 
0.4 - 

si 
iY 

0.3 - 

0.2 - 

Y P  
FIGURE 16. Surface values of the spanwise (sweeping) velocity component as a function of span- 
wise co-ordinate, for 0 = 1 5 O ,  La = 0.01, for t = 30, 60, 90. The curves for t = 60 and 90 are 
essentially coincident, so only one curve h a  been drawn for both time levels. - - -, t = 30; -, 
t = 60, 90. 

(v) After an initial development period of about ten time units, the motions near 
the surface change very slowly with time. 

Of the features listed in $ 1, the first two are satisfied automatically, and the third is 
perfectly clear from the computed results, and so we do not need to consider these 
questions further. 

The consideration of the fourth feature is complicated by the presence of the Stokes 
mass transport, and therefore wiII be considered in more detail below, while the fifth 
feature involves the typical magnitudes of the parameters appearing in the mean cur- 
rent decomposition @), and this will also be dealt with in greater length below. Experi- 
mental features that have been reported but that do not have the same status as the 
five given in $ 1  will also be discussed. 

We start with the fourth feature. Experimental observations (e.g. Langmuir 1938 
or Gordon 1970) indicate that flotsam, or dye, that concentrates in convergence lines 
tends to move faster than the surrounding fluid. The magnitude of this relative ad- 
vancement of marked fluid has apparently never been measured. The visual method of 
determining the existence of relatively higher speeds in convergences amounts to an 
observation of a Lagrangian drift, and therefore includes both mean Eulerian currents, 
as calculated here, and the Stokes mass transport. According to Longuet-Higgins 
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(1953), therefore, the surface value of the total (dimensional) wind-directed transport 
will, in our case, be the sum 

ud = 2S2C COS 8[ 1 $- COS2 8 COS (ny/L)] $- ( U i / V T K )  U(y, 0, t), (15) 

where c = U/K is the characteristic phase speed of the surface wave field and B = a K  . The 
Stokes drift is least over convergence lines, while the second term, developed in res- 
ponse to the Langmuir cells, is greatest over convergence lines. The solutions reported 
for ~ ( y ,  z, t) - ii by CL are dominated by the first harmonic, and therefore vary with y 
essentially like - cos ny/L. The location of the maximum of Ud was therefore deter- 
mined by the sign of the coefficient of cos ny/L in (15), including the Stokes contribu- 
tion and the contribution of u. From the calculations of the fully nonlinear equation 
developed here, however, the form of u is far from sinusoidal, and it is clear that local 
maxima of u d  necessarily occur at  both convergence and divergence lines. The relative 
magnitudes of u i / v T K  and of 8% in (15) do not affect this conclusion. (We will show in 
the next subsection, however, that in typical cases u d  may be significantly larger in the 
convergence zones, and that the local maximum a t  divergence zones is a small effect.) 

The observations that have been made suggest that satisfaction of this fourth feature 
requires only that Ud have a local maximum over downwelling regions. The relative 
advancement of material in the convergence zones should be most apparent once 
material has actually collected in these zones, since the region of divergence is soon 
cleared of visible traces of material. When attention is confined to the vicinity of the 
convergence zones, only a local maximum in the speed is likely to be revealed. 

Thus, the first four qualitative features are confirmed by our calculations. The fifth, 
a quantitative statement, depends upon the parameters that occur in the theory. It 
will be seen from the next subsection that the computed results also compare favour- 
ably with this attribute. 

5.2. Quantitative comparisons 

I n  order to make quantitative assessments of the predicted current motions, it  is 
necessary to fix the input parameters. The parameters involved are La, 8, and the 
scalings defined in equation (3): u$/v*K, for z directed currents; and u * ( E 2 c / v T K 2 ) * ,  for 
vertical and sweeping currents. (The parameter ( E 2 a / V T K 2 ) *  appears in the CL theory, 
where it is denoted by the symbol R.) To address these questions, we will first suppose 
that our solutions for La = 0.01 are representative of situations of real interest, and 
that, as our solutions for 8 = 15" and 8 = 30' indicate, the current speeds are not 
sensitive functions of 8. Second, we will always have in mind a wind-generated wave 
field, and will employ empirical results for wind waves to estimate wave parameters 
when required. The object will be to relate all quantities in a rough way to the wind 
speed, since this is the only environmental parameter that is almost alwaysreported by 
observers. The friction velocity can easily be related to the wind. 

The most difficult parameter to estimate is vT. Three methods occur to us as ways to 
proceed: first, we can use the widely accepted results that the average surface drift is 
about 3-5 yo of the wind speed U,. Second, according to the data summarized by Scott 
et al. (1969) downwelling speeds are about 0.85 % of U,. The reported downwelling 
speeds were certainly not maximum values, but should give a good idea of the correct 
orders of magnitude. We may therefore use this information to assign a value to vT by 
adjusting our downwelling speeds to 0.0085UW. Third, the logarithmic structure of 
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the horizontal average U of u can be used to fix vT, as suggested in part 1. All three 
methods yield roughly similar results. 

The estimate according to the first method follows from the horizontal average of the 
drift given by (15), 

Set gd = 0.O35Uw, cos 8 M 1, and 5 = 0.3, which is typical of the calculations in part 1. 
I n  a wind-generated sea, the wave height H (which in the present wave model is ~c /K) ,  
phase speed c ,  and wavenumber K of waves corresponding to the peak of the wave 
energy spectrum depend upon the fetch and the wind duration in a complicated and 
poorly understood way. On the other hand, a simple relation to the wind seems to 
emerge for ‘saturated’ waves, or ‘fully developed’ seas. According to Stewart (1967), 
for example, for this case the dominant waves are characterized by 

ud = 2E2C cos 0 + (Ui/VTK) U ( 0 ,  t ) .  (16) 

( 17 a-c) 

( 1 7 4  

For fetch- or duration-limited situations, H and c are less than (1 7a) and (1  7 b )  indicate, 
and cr and K are greater than (17c, d). Observations of Langmuir circulations have 
probably all been made under fetch- or duration-limited circumstances, but for 
purposes of estimating typical magnitudes in the absence of more specific data, the 
use of (17) seems reasonable. Adopting this course, we find 

U $ / V T K  = (0, -0*0O5Uw)/U = O*lu,. (18) 

As in part 1, we assume that the ratio of air to water friction velocities is about 30, 
and that the ratio of U, to the air friction velocity is about 22. Then 

U, M 660u, (19) 

(20 )  

As an example, for U, = 10 m/s, this yields vT M 23 cm2/s, which seems like a plausible 
value. 

The dimensionless maximum downwelling speed (the maximum of IF]) in the pres- 
ent solution is about 0.6, leading to a corresponding dimensional downwelling speed of 

(21 )  

and the use of (1 7 d )  finally produces 

VT M 2.3 x 10-6U&/g. 

wd = O * ~ E U *  ( a / v T  K2)a.  

To estimate vT by the second method, we set wd = 8.5 x 10-3U, (keeping the remarks 
already made about this value in mind) and find that 

VT M C2U/87K2, 

or, on replacing E by wave height as before, 

vT M 7.1 x 1 0 - 4 ~ 2 ~ .  (22 )  

(We note that this is the form of eddy viscosity invoked in the CL model. It is recovered 
here quite independently.) To reduce (22 )  to a function of U,, we again use (17) to 
obtain 

(23)  

which is remarkably close to the estimate (20 )  of the first method. 

VT M 2.84 x lO-’U&/g 
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According to part 1, the slope of the logarithmic ‘inertial sublayer’ found numeri- 
cally for V will agree with the experimentally measured value if 

VT Z O.lU* k/K, 

where k = 0.4 is von KArmBn’s constant. Using (17d) and (19), this produces 

VT z 6 x 10-5U$lg. (24) 

The last value is higher than those from the previous two methods, but is of the same 
order of magnitude. 

The first method leads to the following form for the Langmuir current vector U, 
(from (3)) : 

To arrive at this form of U,, we have used only (17b) and (18). 
We will now use (25) to estimate verticaland sweep speedsin the cells. With HK = 0.2 

(as was found appropriate for saturated waves), the maximum downwelling speed is 

0.1U~HK,/iomax I WI = o .oI~U, ,  
where max I WI z 0.6. 

Thus, the maximum downwelling speed is twice the experimental values reported in 
the literature for downwelling. Since the maximum downwelling must exceed the 
reported values (which represent either some kind of average value over depth of the 
downwelling, or the downwelling very near the surface), this result is very reasonable 
(and our fifth feature is confirmed). Equation (25) also predicts a maximum sweeping 
speed of about 0-OZU,, for HK = 0.2. 

The 2 component of (25), together with the estimates which led to (25), show that the 
total surface drift U, at convergence zones exceeds that at  divergence zones by about 
1 yo of the wind speed. The local maximum over upwelling zones is relatively weak, 
exceeding the average total drift by only about 14 yo; the local maximum over down- 
welling zones, on the other hand, exceeds the average total drift by about 30 %. 

U, z O - l U w { u i + & c f f ~ l O ( V j +  W k ) } .  (25) 

6. Concluding remarks 
In parts 1 and 2 of this paper, a detailed picture of the Langmuir circulations and 

associated vertical momentum transport has been constructed. This picture is based 
upon a theory originating in earlier work by Craik & Leibovich (1976). The absence of 
a steady limit to the problem as formulated here results from the neglect of bottom 
friction and the neglect of Coriolis accelerations. Inclusion of either effect would 
permit the approach to a steady limit. Except for shallow basins, however, the time 
required for a steady limit to emerge probably greatly exceeds the lifetime of indi- 
vidual Langmuir cells. We contemplate a continuous process whereby Langmuir 
cells develop under given wind and wave conditions and disappear as the waves 
responsible for the non-uniform Stokes drift necessary to the theory detune, or as the 
wind direction shifts. According to the theory, the birth, life and death of a given cell 
requires at  least several (perhaps 10 or more) units of the time interval Td, which 
is typically of the order of minutes. 

The circulations and wind currents that result from the present calculations seem to 
agree with the scant data available. Many open questions remain to be answered, 
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however, before the theoretical mechanisms explored here can be confirmed or dis- 
proved as an underlying explanation of Langmuir circulations. The most important 
questions that can be raised are those relating to the surface wave spectrum. In par- 
ticular, are wind wave fields commonly associated with a structure with sufficient 
coherence to produce a spanwise varying Stokes drift ? The present theory requires the 
waves to be phase locked, or nearly so, for a time interval of order Td. (If the system is 
slightly detuned, Craik (1970) showed that the cells slowly drift perpendicular to the 
wind direction. Such a motion has been observed by Myer (1971).) This requirement is 
not conceptually restrictive, but whether it actually occurs in nature is open to 
question. (The effect of perspective on visual regularity of the sea surface is illustrated 
in interesting photographs in Kinsman (1965, p. 543). Kinsman remarks that the 
regular pattern that is apparently lost in a growing sea can be regained by shifting to a 
higher viewing level.) Recent calculations made by 0. M. Phillips (private communica- 
tion) indicate that the phase-lock time interval required here may be overly long, even 
for a bimodal wave spectrum. 

Assuming, nevertheless, the existence of lines of maximum wave height, another 
question bearing further investigation is the location of convergence zones relative to 
lines of maximum wave height. According to the present theory, the waves that drive 
the Langmuir cells should have lines of maximum wave height midway between con- 
vergence zones (see figure 1). Myer (1971) has reported measurements that suggest 
that lines of maximum wave height exist, but that they coincide with convergence 
zones. This is a point that requires additional substantiation. From the presentation of 
Myer’s data, wave records in the zones of maximum height seem to be between 5 and 8 
wave periods in length. Without a very careful treatment of errors associated with the 
statistics, the significance of this data remains unclear. 
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